인류의 100대 과학 사건(28-36) > 자유 게시판

본문 바로가기
사이트 내 전체검색

자유 게시판

인류의 100대 과학 사건(28-36)

페이지 정보

작성자 buf63…쪽지보내기 메일보내기 자기소개 아이디로 검색 전체게시물요원 댓글 0건 조회 757회 작성일 04-12-10 00:46

본문

사진#1
28. 토리첼리의 대기압 실험

17세기에 들어와 서양에서는 공기에 관한 연구가 활발하게 진행되었다. 최초의 본격적인 연구는 이탈리아의 물리학자 토리첼리로부터 비롯된다고 말할 수 있다. 그는 진공의 존재한다는 사실과 대기압의 위력을 다음과 같이 실험적으로 증명하였다. 한쪽이 막힌 길고 두꺼운 유리관에 수은을 가득 채운 다음, 한 쪽을 손가락으로 막아 수은이 담겨진 그릇에 세우고 손가락을 떼었을 때 유리관 속의 수은이 서서히 내려가기 시작하였다. 그러나 어느 지점에 이르러서는 더 이상 내려가지 않고 멈추었다. 이때 유리관 안에 남아있는 수은의 높이는 76센티미터였다.

이 실험에서 두가지 사실이 밝혀졌다. 첫째 진공이 존재할 수 있다는 사실이다. "토리첼리의 진공"은 인류가 만든 최초의 진공이다. "자연은 진공을 싫어한다"라는 명제에서도 드러나듯이, 아리스토텔레스의 이론에 의하면 자연에는 진공이 존재할 수 없었다. 그러나 실험결과 수은주의 상단에 진공이 형성됨으로써 오랫동안 고수되던 권위가 사라졌다. 이것은 곧 실험과학의 승리를 의미한다. 둘째, 수은주가 일정한 점에서 더 이상 내려오지 않고 머물러 있는 것은 대기압의 작용 때문인데, 그 대기압은 수은주 76센티미터를 올릴 수 있는 힘을 가지고 있다는 사실이다.


사진#2
29. 파스칼의 원리 정립

유체정력학의 확립에 초석이 되었다고 평가되는 파스칼의 원리는 1652년 무렵에 프랑스의 수학자·물리학자이자 종교가인 파스칼(Blaise Pascal, 1623-1662)에 의해 처음으로 분명하게 정립되었다. 그것을 쉽게 풀어 기술하면 다음과 같다.

"밀폐된 용기 속에 있는 유체의 어느 한 부분에 가해진 압력은 그 유체의 모든 부분과 용기의 안쪽 벽에 똑같은 크기로 전달된다."

이 원리가 가지는 과학사상의 의의를 제대로 파악하기 위해서는 당시에 이것과 긴밀히 연관되어 있던 진공의 문제를 함께 생각해야 한다. 17세기 유럽의 과학계에서는 기존의 아리스토텔레스주의 자연철학에 대해 기계적 철학이 강력하게 도전하고 있었으며, 그 가장 첨예한 대립 지점 중의 하나가 바로 진공에 관한 문제였다. 사이펀이나 펌프가 일정한 높이 이상에서는 제대로 작동하지 않는다는 사실이 기계적 철학을 지지하는 과학자들의 주목을 끌고 있었고, 토리첼리의 수은기압계 실험 등이 '자연은 진공을 싫어한다'는 원리를 고수하려는 기존의 자연철학의 궁색한 설명들의 타당성을 크게 위협하고 있었다. 바로 이때 파스칼의 일련의 기발한 실험들, 즉 물과 포도주의 비교실험, 머리부분의 모양이 서로 다른 유리기둥들을 사용한 비교 실험, 퓌 드 돔 실험, 진공 속의 진공 실험 등이 제시되면서 유체의 압력(당시에는 아직 '무게'라고만 생각했지만) 전달 현상에 관한 기계론적인 설명이 부인할 수 없는 이론으로 자리잡게 되었던 것이다.


사진#3
30. 미적분법의 발견

미분학은 곡선의 접선을 긋는 것으로부터, 그리고 적분법은 곡선으로 둘러싸인 부분의 면적을 구하는 것으로부터 시작되었다고 할 수 있다. 방법 자체는 그리스 시대부터 논해져 왔지만, 현대적인 의미에서의 미적분법은 뉴턴과 라이프니츠에 의해 건설되었다고 할 수 있다.

뉴턴은 1665년 대학으로부터 집으로 귀향하던 중에 그의 유명한 삼대 발견, 즉 빛의 분산, 만유인력의 존재, 미적분학을 이루어 냈다. 1687년에는 그의 역학 체계를 나타내는 대저 프린키피아를 출간하였다. 뉴턴 역학의 기초를 이루는 운동의 3대 법칙이 이 프린키피아에 기술되어 있는데, 1704년에는 3차곡선론, 곡선의 구적법을 발표하여 미적분법의 정식 설명을 공표하였다. 미적분학에 관한 계산법에 관해서는 라이프니츠와의 사이에 그 선취권에 관한 논쟁이 있기도 하다. 그러나 발표는 라이프니츠 쪽에서 앞섰지만 실은 이미 그 10년 전에 뉴턴이 발견, 연구하고 있었다는 사실이 후대에 와서 밝혀지기도 했다.

라이프니츠는 1675년에 새로운 계산법, 즉 미적분법을 발견하였고, 이 결과를 1677년에 발표했다. 1686년에 발표한 〈심오한 기하학 및 무한소 분석에 관하여〉 라는 논문에서 라이프니츠는 많은 초등 함수들의 적분에 관한 법칙을 실었고 적분 부호를 이용했을 뿐 아니라 미분과 적분을 서로에 대한 역연산이라는 사실까지 설명하고 있다. 또한 그는 부정적분을 정적분과 분리하여 적분상수도 생각하고 있었다.

1693년에 그는 초월함수를 급수로 전개하여 여러 가지 결과를 얻기도 했으며, 1695년에는 함수의 적을 n회 미분할 때 쓰이는 공식을 발표하였다. 여러 가지의 용어를 도입한 것도 그의 공적이다. 미분, 함수, 좌표, 미분방정식, 산법 등과 같은 용어는 그가 최초로 이름을 붙인 것이다. 라이프니츠의 새로운 계산법은 1696년에 로피탈(l'Hospital, 1661-1704)이 처음으로 저작의 모양으로 만들어 〈무한소분석〉이라는 제목으로 출간하였다.


사진#4
31. 세포의 발견

코르크는 원형질이 없이 속이 빈 세포가 규칙적으로 배열해있는 것으로, 부피생장하는 식물의 줄기, 가지, 뿌리의 가장 바깥쪽에 위치한 보호조직이다. 영국의 로버트 훅(Robert Hooke, 1635-1703)은 당시에 개발되어 사용되기 시작하던 현미경을 이용하여 코르크를 관찰한 후, 이를 '작은 방'이라는 뜻의 라틴어를 빌어 '세포(cell)'이라고 이름지었다. 1665년 그는 주변에서 쉽게 볼 수 있는 여러 가지 대상들을 현미경으로 관찰하고 그 구조를 상세하게 기술한 <마이크로그라피아(Micrographia)>를 출간하였다. 그러나 엄밀하게 보아 그가 관찰한 것은 세포 자체가 아니라 세포벽이었다. 또 당시 현미경의 성능상 한계로 더 자세한 세포 구조를 관찰하기 어려웠고 훅은 세포가 지니는 진정한 의미에 대해 충분히 이해하지 못했다.

1800년대에 슐라이덴(Mathias-Jacob Schleiden, 1804-1881)이 식물세포설을 주장하고, 이어서 슈반(Theodor Schwann, 1810-1882)이 동물계까지 세포설을 확장시킨 후에야 비로소 생물의 구조적/기능적 기본단위로서의 세포의 중요성이 알려지게 되었다. 이러한 세포설의 등장으로 생물학은 발생학, 유전학 및 진화론에서 근대적 개념을 형성하게 되었다.


사진#5
32. 뉴턴 고전역학의 성립

인류 역사상 최대의 과학자라 할 수 있는 뉴턴(Isaac Newton, 1642-1727)이 정립한 역학 체계는 아인슈타인이 나오기 전까지 수 백년 동안 인류의 시공 개념을 장악했다. 흔히 고전역학이라고 불리는 이 역학 체계는 뉴턴의 힘에 관한 세 가지 법칙과 만유인력의 법칙을 근간으로 하고 있다.

뉴턴은 자신의 이론을 통해 케플러가 제시한 행성의 타원 궤도 운동을 수학적으로 완벽하게 설명할 수 있었다. 만유인력을 중심으로 한 그의 역학 체계는 1687년에 출간된 <자연철학의 수학적 원리>에서 체계적으로 소개되었는데, 이것은 다윈의 <종의 기원>과 함께 인류 역사상 가장 중요한 과학책이다.

16-17세기에 진행된 과학의 혁명적인 변화를 흔히 '과학혁명'이라 부른다. 뉴턴의 혁명이야말로 코페르니쿠스에 의해 촉발된 천문학의 문제들을 역학적으로 완전히 설명하고, 갈릴레오에서부터 비롯된 역학의 혁명을 완결짓는 것이었다. 이러한 뉴턴의 역학은 이후 호이겐스, 라플라스 등에 의해 더욱 정교화되었고, 이후 모든 물리 과학(physical science)의 기본이 되었다.

나아가 고전역학은 특정한 초기 조건과 물체의 운동을 기술할 수 있는 방정식이 있으면 세상에서 일어나는 모든 일을 정확하게 예측할 수 있다는 믿음을 심어 주었다. 이러한 믿음은 20세기에 들어와 양자역학이 성립되면서 상당히 퇴색되었지만, 일상적인 인간의 삶에서는 여전히 큰 영향을 미치고 있다.


사진#6
33. 증기기관의 탄생

18세기 증기기관의 등장은 사람이나 가축, 흐르는 물의 힘을 동력으로 사용하던 시기에 중대한 변화를 가져온 사건이었다.

증기의 힘을 동력으로 사용할 수 있다는 사실은 고대에도 알려져 있었고 기원 후 1세기 알렉산드리아의 헤론은 증기의 힘으로 움직이는 장난감을 실제로 만들기도 했다. 그러나 증기의 힘을 실용적인 목적으로 사용하려는 시도는 17세기 말에 와서야 비로소 나타났다. 1698년에 영국의 토마스 세이버리는 증기를 응축시켜서 얻은 흡입력으로 광산의 물을 뽑아올리는 수동 밸브 펌프를 만들어 최초로 특허를 받았고, 1712년에 토마스 뉴커맨은 피스톤과 실린더를 이용해 작동하는 최초의 실용적인 증기기관을 만들었다.

산업혁명기에 증기기관이 널리 전파되는데 가장 큰 영향을 미친 사람은 제임스 와트이다. 1765년 그는 뉴커맨 기관을 개량하는 과정에서 분리 응축기를 도입하여 연료의 소비량을 뉴커맨 기관의 1/4 정도로 줄이는 중요한 기술적 진전을 이루어내었다. 또한 와트는 이전까지 왕복운동만 가능하던 증기기관이 회전운동도 할 수 있도록 개량함으로써 증기기관이 물 펌프 용도만이 아니라 공장에서 기계를 돌리는 동력으로도 사용될 수 있도록 만들었다. 이에 따라 공장들은 수력을 동력으로 이용하기 위해 강가에 자리할 필요가 없게 되었고, 운송 채널이 다양하고 노동력이 풍부한 도시 근처에 자리를 잡을 수 있게 되었다. 이는 18세기 말에서 19세기 초까지 영국의 산업혁명에 지대한 영향을 미쳤다.


사진#7
34. 린네의 생물의 분류체계확립

1707년 스웨덴의 읍살라에서 태어난 린네(Linneaus, Carl, 1707-1778)는 18세기를 대표하는 탁월한 식물학자이다. 흔히 '분류학의 아버지'라고도 불리는 그는 이명법을 분류학에 적용한 학자로서도 널리 알려져 있다.

오래 전부터 학자들은 생물계를 분류할 수 있는 방법을 고안하려고 노력하였지만, 만족할 만한 결과를 얻지 못하고 있었다. 20대 초반부터 식물의 성에 관심을 두고 꽃의 구조를 연구하기 시작했던 린네는 이 연구를 바탕으로 식물을 분류하는 새로운 방법을 제시하였다. 그는 수술의 수에 따라 식물계를 24개의 강으로 구분하고, 이명법을 사용하여 식물의 이름을 종과 속으로 나타내었다.

1737년 린네는 <자연의 체계>라는 책에서 분류 방법을 제시하였는데, 종래의 방법보다 식물을 나누는 데 매우 편리하였기 때문에 발표되자마자 많은 학자들의 호응을 얻으며 유럽 전역에서 유명 인사가 되었다. 그는 그의 3대 저서중 하나인 1737년 <식물의 속>과 1753년 2권으로 된 <식물의 종>을 연속적으로 발간하여 분류학의 계통을 확립하였다.

린네의 분류법은 정적인 분류법이라고 말할 수 있다. 또한 생물의 질적인 변화, 즉 진화를 인정하지 않는 기계적 자연관이 풍미하던 그의 시대를 대표하는 생물학으로 꼽힌다. 19세기에 접어들면서 동식물의 분류 방법은 더욱 다이나믹한 사고에 의해 진전되어 상호 발생과 관련성을 중시하는 자연 분류체계의 발달로 이어진다.


사진#8
35. 아크라이트 방적기의 등장

영국의 기술자 아크라이트는 1769년에 수력 방적기의 특허를 획득함으로써 영국의 섬유산업 발전에 결정적 계기를 마련하였다. 아크라이트가 1769년에 특허를 얻은 기계는 종래에 이미 개발되어 사용되고 있던 롤러드래프트 장치와 플라이어가 붙은 방차의 꼬기, 감기, 기구를 멋드러지게 결합한 것이었다. 이 방적기는 보통 수차로 작동했기 때문에 수력 방적기라 불렸다. 그의 방적기는 날실 생산을 가능하게 했고, 공정을 연속화했을 뿐 아니라, 숙련공을 불필요하게 만들었고, 인력 이외의 동력을 사용하게 함으로써 방적 산업에서 대량 생산이 가능하게 만들었다. 그 후 그는 방적 공정과 그에 관련되는 여러 가지 기계를 유기적으로 결합, 배치하여, 이런 기계들이 공통의 동력으로 구동되는 생산 체계를 고안해내었다. 그는 이런 체계에 기반하여 대규모 방적 공장을 각지에 설립하고, 이것을 직접 경영하였다. 이런 점에서 그는 산업혁명기의 대표적 기업가로 손꼽힌다.

한편 그의 독점에 반대하는 면업 경영자들이 그의 특허에 소송을 벌여, 그의 특허는 85년에 무효가 되었다. 그러나 그의 착상이 비록 남의 것이었다고 판정났다고 하더라도 그것을 실용화할 수 있는 기계로 발전시켜 근대적 공장제도를 창시하고 성공적인 경영관리 등을 이룩한 점은 높이 평가할 만하다. 86년에 그는 기사 칭호를 받았고, 87년에는 더비셔의 주지사로 임명되었다.


사진#9
36. 라부아지에와 화학혁명

18세기 무렵 화학은 다소 어정쩡한 상태에 있었다. 한편으로는 주로 영국의 화학자들을 중심으로 대기로부터 이산화탄소, 이산화질소, 산소 등의 성분기체들이 분리되고 그 성질들이 다양하게 연구되는 등 경험적 자료의 축적 면에서 상당한 성과들이 있었던 반면, 그런 자료들을 포함한 많은 화학 현상들을 설명하는 데에는 여전히 플로지스톤 이론이 동원되고 있었다. 플로지스톤 이론에서 말하는 플로지스톤은 어떤 때는 '비물질적 작인'으로 설명되다가 또 다른 경우에는 '물질'인 것처럼 제시되기도 하는 등 모호한 면이 있었고, 특히 금속을 태우는 실험에서는 결정적인 모순을 드러내고 있었다.

이런 상황은 18세기 말 프랑스의 화학자 라부아지에에 의해 상당 부분 바뀌었다. 그는 연소, 하소, 호흡 현상을 플로지스톤이 아닌 산소의 출입으로 설명하여 정량적인 실험 결과를 뒷받침했으며, 그 과정에서 정량적, 체계적인 실험과 일반화라는 태도를 화학에 뿌리내리려 했다. 나아가 원소와 화합물 사이의 구분, 더 기본적으로는 물질의 개념을 명확히 하려 했으며 그것을 바탕으로 체계적인 화학명명법 체계의 수립을 시도했다. 1789년에는 이런 성과를 담은 화학분야 최초의 교과서와 전문학술지도 나왔다.

흔히 '화학혁명'이라 부르는 18세기 후반의 이런 다소 급격한 변화과정을 거쳐 화학은 하나의 독자적인 전문과학분야로 자리잡아 갔다.
































추천1 비추천0
Loading...

댓글목록

등록된 댓글이 없습니다.

Total 14,268건 514 페이지
자유 게시판 목록
번호 제목 글쓴이 조회 추천 비추천 날짜
4008 buf63…쪽지보내기 메일보내기 자기소개 아이디로 검색 전체게시물 941 1 0 11-22
4007 흑나리쪽지보내기 메일보내기 자기소개 아이디로 검색 전체게시물 920 0 0 12-01
4006 buf63…쪽지보내기 메일보내기 자기소개 아이디로 검색 전체게시물 946 0 0 12-03
4005 buf63…쪽지보내기 메일보내기 자기소개 아이디로 검색 전체게시물 847 0 0 12-03
4004 buf63…쪽지보내기 메일보내기 자기소개 아이디로 검색 전체게시물 729 0 0 12-05
4003 buf63…쪽지보내기 메일보내기 자기소개 아이디로 검색 전체게시물 1522 3 0 12-05
buf63…쪽지보내기 메일보내기 자기소개 아이디로 검색 전체게시물 758 1 0 12-10
4001 buf63…쪽지보내기 메일보내기 자기소개 아이디로 검색 전체게시물 918 0 0 12-13
4000 buf63…쪽지보내기 메일보내기 자기소개 아이디로 검색 전체게시물 814 0 0 12-18
3999 buf63…쪽지보내기 메일보내기 자기소개 아이디로 검색 전체게시물 813 1 0 12-24
3998 buf63…쪽지보내기 메일보내기 자기소개 아이디로 검색 전체게시물 932 0 0 12-24
3997 현주아빠쪽지보내기 메일보내기 자기소개 아이디로 검색 전체게시물 951 0 0 12-28
3996 신은없다쪽지보내기 메일보내기 자기소개 아이디로 검색 전체게시물 1097 1 0 12-28
3995 일장춘몽쪽지보내기 메일보내기 자기소개 아이디로 검색 전체게시물 1028 1 0 12-30
3994 buf63…쪽지보내기 메일보내기 자기소개 아이디로 검색 전체게시물 1019 0 0 01-01
3993 라스푸틴1쪽지보내기 메일보내기 자기소개 아이디로 검색 전체게시물 697 0 0 01-02
3992 buf63…쪽지보내기 메일보내기 자기소개 아이디로 검색 전체게시물 1049 1 0 01-06
3991 buf63…쪽지보내기 메일보내기 자기소개 아이디로 검색 전체게시물 846 0 0 01-06
3990 buf63…쪽지보내기 메일보내기 자기소개 아이디로 검색 전체게시물 815 0 0 01-07
3989 셈야제애인쪽지보내기 메일보내기 자기소개 아이디로 검색 전체게시물 812 0 0 01-13
게시물 검색

회원로그인

구글 OTP 인증 코드 입력

디바이스에 앱에서 OTP 코드를 아래에 입력합니다.

OTP 를 잃어버렸다면 회원정보 찾기시 해지 되거나,
아래 링크를 클릭하여 이메일 인증으로 해지 할수 있습니다.

OTP 해지하기

론건맨 상위 순위 10

  • 1 사라랜스403,351
  • 2 선상반란302,220
  • 3 eggmoney119,347
  • 4 샤논115,847
  • 5 nabool100,720
  • 6 바야바95,556
  • 7 차카누기94,273
  • 8 기루루88,907
  • 9 뾰족이87,755
  • 10 guderian008386,895

설문조사

론건맨 싸이트가 열리는 체감 속도는 어떤가요.?

설문조사

론건맨이 부활한 것을 어떻게 생각하시나요.?

접속자집계

오늘
2,347
어제
2,473
최대
2,581
전체
14,290,493
론건맨 요원은 31,003명입니다